

Low-Noise High-Stability I to V Converter

ultra-low-noise, floating, input bias voltage, stabilized feedback

- Ultra-low voltage noise: 1.2 nV/√Hz @ 1 kHz
- Ultra-low current noise: 5-6 fA/\/Hz @10 Hz
- The only available IV converter with actively stabilized input voltage: drift < 0.2 μV/°C
- A floating instrument: avoids ground loops
- External bias voltage up to ±2 V,
 - enables host of new measurements, such as exploring symmetric source-drain biasing, biasing multi-terminal devices, biasing SPM tips, reducing noise by measuring current twice, and many more
- Small and light for mounting directly on the breakout box
- Adjustable low-pass filter from 30 Hz to full bandwidth
- Variable gain: 10⁵ to 10⁹ V/A

Model: SP983c	-IF	01-IF	-LSK	02-LSK					
Input J-FET	IF3602, R < 1 MΩ α		LSK389A, best for R > 1 M Ω and C < 1 nF						
Stable, low-noise and overload protected input current									
Current noise @10 Hz & 10^9 V/A (fA/ \sqrt{Hz}) Current noise @1 kHz & 10^9 V/A (fA/ \sqrt{Hz})	e ç		5 8						
leakage current magnitude (pA)	40	50 *	3	3 *					
Stable, low-drift and low-noise input voltage (low voltage noise relevant for R < 1 M Ω)									
Input voltage noise @ 10 Hz (nV// \sqrt{Hz}) Input voltage noise @ 1 kHz (nV// \sqrt{Hz})	2.0 1.2	2.6 * 2.0 *	4.5 1.9	5.0 * 2.7 *					
Input voltage drift	0.15 μV/K @25°C - feedback stabilized								
Input bias voltage (internally subtracted at output)	±100 mV	±1 V NEW	±100 mV	±2 V NEW					
Gain	five decades 10 ⁵ to 10 ⁹ V/A - remote controllable								
Integrated low-pass filter	30 Hz to 100 kHz - remote controllable								
DC input impedance	33 Ω – 46 Ω								
GBWP	600	MHz	68 MHz						
Dimensions and weight	small size, low weight 122 x 55 x 35 mm, 165 gr								

Table shows typical specs

* Noise and leakage current values are measured at zero bias and may change with bias voltage. The noise of the externally applied voltage (divided by 2, 5 or 10 depending on the model) adds to the input voltage noise. Therefore, it's important to use a very low-noise voltage source, such as BASPI's LNHR DACII

Bandwidth

Gain (V/A)	10 ⁹	10 ⁸	10 ⁷	10 ⁶	10 ^₅
Typical Bandwidth (-3dB) @ 1V	1.7 kHz	24 kHz	94 kHz	315 kHz	580 kHz

Applications

Low-noise and low-drift current measurements

- low-temperature experiments, e.g., quantum transport in dilution refrigerators optimized for filtered lines with high capacitance (IF model) optimized for high impedance loads, e.g., spin-blockade readout of a qubit (LSK models)
- scanning tunneling microscopes preamplifier
 can apply a bias voltage and simultaneously measure the current on the same lead
- sensitive current measurements with high bias voltage stability input voltage is actively stabilized to ensure negligible drift
- low-level light detection with photodiodes or photomultipliers

